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1. INTRODUCTION

The force state mapping (FSM) technique, as proposed by Masri et al. [1, 2], for
a single-degree-of-freedom system uses the response measurements to construct the
restoring force surface (which may be non-linear) over the displacement}velocity state
plane. A surface which can be described analytically is then "tted to this empirical surface to
obtain quanti"ed system parameters. This approach to system identi"cation has been
applied to a variety of applications including non-linear and multi-degree-of-freedom
systems, undergoing free or forced response [3}7]. The technique requires estimates for the
system displacement, velocity and acceleration. In practice, whether these estimates are
obtained by three separate instruments [7] or by careful numerical di!erentiation and/or
integration of a single measured signal [4], the resulting signals may su!er phase distortion.
Furthermore, for forced response, there is a possibility that the force signal may experience
phase distortion relative to the response signals. A practical example of how these problems
may manifest themselves was given in the experimental study by Worden and Tomlinson
[8], in which all the measured signals were phase shifted by a multiplexed analogue}digital
converter.
Wright and Al-Hadid [9] have derived expressions for the errors in the parameter

estimates obtained by FSM in the presence of phase distortion of the measured signals for
a linear system subject only to a sinusoidal excitation force. They have shown that for
lightly damped systems, which are often of most interest, the damping parameter is the most
susceptible to error particularly with phase distortion in the excitation force. It is possible to
use free response data as input to the FSM technique [7] in order to avoid the phase lag
between the excitation and the response and so remove the associated error in the
parameter estimates. In this case, there will also be a potential for error in the parameter
estimates due to relative phase error in the response signals. However, althoughWright and
Al-Hadid [9] reach the general conclusion that &&very accurate data appear to be a basic
requirement for FSM approach for lightly damped systems'', they also note that di!erent
types of excitation are likely to yield di!erent parameter estimates and hence error
sensitivity. Thus, it is necessary to evaluate the sensitivity to phase errors of the force state
mapping technique using free response data as input.
In this letter, the errors in the parameter estimates obtained with FSM due to phase

errors for free response are assessed analytically. A novel pictorial approach is validated in
the "rst instance with forced response and is then extended to the case of free response
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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Figure 1. Schematic of a linear single-degree-of-freedom system.
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which is of interest here. As in Wright and Al-Hadid's study, the system considered is linear,
however, it should be noted that for systems with polynomial non-linearities, the non-linear
terms can be decomposed into a dominant linear sti!ness and/or damping, plus smaller
contributions at higher harmonics. Thus the sensitivity of a linear system to phase errors
may be indicative of the sensitivity of the non-linear system.

2. FORCED RESPONSE

The equation of motion for the system in Figure 1 under forced response is

myK#cyR #ky"F. (1)

Under sinusoidal excitation this becomes

(!m��#jc�#k) e���"f e��e���, (2)

where tan �"2�r/(1!r� ) and r"�/�
�
(i.e., the ratio between the excitation and natural

frequencies).
This can be represented graphically as a vector diagram, with the basis vectors aligned

along the real and imaginary axes as in Figure 2(a), in which the three instantaneous
responses (inertia, damping and sti!ness) and the instantaneous excitation force are given
by the real components of the vectors. For the purpose of force state mapping, the
magnitude of both the excitation force and mass must be known in order to construct the
restoring force.
In the absence of noise, the FSM process as applied to a system governed by equation (2)

is simply a matter of determining the magnitude of sti!ness and damping which will close
the vector diagram. Expressions for the errors in the sti!ness and damping estimates can be
obtained by geometric considerations. It should be noted that the response signals (y, y� , yK )
have a relative phase angle of 903.
The error in the parameter estimates due to a phase error in the excitation signal can be

assessed by examining the situation when the measured force is delayed relative to the
actual force by a time �t. The excitation vector will be rotated clockwise by an angle
�"��t. (Note that a positive angle is a time lag). The force diagram for this scenario is
shown in Figure 2(b).
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Figure 2. Force diagrams for forced response: (a) no phase error; (b) phase lag in excitation force; (c) phase lag in
displacement and (d) phase lag in velocity.
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De"ne the signed normalized error in the estimated sti!ness k� as

�
�
"(k�!k)/k . (3)

Comparing the triangles OPQ and ORS in Figure 2(b), the di!erence between the actual
sti!ness k and the estimate k� is

k�!k"f cos (�!�)!f cos �. (4)

Some manipulation yields

N�
�
"(1!cos �) (1!r�)!2�r sin �. (5)

Similarly, the signed normalized error in the estimated damping c� can be de"ned as

�
�
"(c�!c)/c . (6)

By considering triangle ORS in Figure 2(b), this quantity can be expressed as

�
�
"(cos �!1)!sin � ((1!r� )/2�) . (7)

Figure 2(c) and 2(d) depicts the case for phase lag in displacement and velocity
respectively. Using the same approach as for phase lag in the excitation force, error
estimates can be obtained for phase lag in displacement and velocity. These expressions are
summarized in Table 1.



TABLE 1

Errors in parameter estimates for forced response

Phase lag in

Error Displacement Velocity Force
(Figure 2(b)) (Figure 2(c)) (Figure 2(d))

�
�

cosec �!1 2�r tan � (1!cos �) (1!r� )!2�r sin �
�
�

(tan �)2�r cosec �!1 (cos �!1)!(sin �) (1!r�)/2�r
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Figure 3. Error in damping estimate caused by time lag in excitation force (�"0)2%).
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For systems with small damping, an order of magnitude analysis reveals that the
damping estimate is the most susceptible to error, in particular when the excitation force
experiences a phase shift, as previously predicted. Wright and Al-Hadid illustrated the
variation of damping estimate error for a range of frequency ratio and phase shift with
a speci"c example (Figure 5 of their paper [9]). Figure 3 shows variation of �

�
obtained with

equation (6) for the same range of frequency ratio, phase shift and the same damping ratio
(�"0)2%) . It should be noted that here a phase lag is de"ned as a positive angle whereas
Wright and Al-Hadid de"ned a phase lead as positive. Excellent agreement can be seen
between the two graphs indicating that the general pictorial approach to error estimation is
valid.
The next most signi"cant error in the damping estimate occurs when a phase shift is

present in the displacement. For small phase lags this error can be written as �
�
"�/2�r .

Using the de"nitions of � and r

�
�
"�

�
�t/2� . (8)

This indicates that for a given time lag (rather than phase lag), the error in the damping
estimate is constant and does not depend on the excitation frequency.
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Figure 4. Force diagrams for free response: (a) no phase error; (b) phase lag in displacement and (c) phase lag in
velocity.
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3. FREE RESPONSE

For a linear system undergoing free response the displacement, velocity and acceleration
is

y(t)"Ae�����e � ����(� ; yR (t)"Ae����� (�
�
e��) e� ����(� , (9a, b)

yK (t)"Ae����� (��
�
e���) e� ����(� , (9c)

where �"c/2�km , sin �"�1!��, cos �"!�, �
�
"�k/m, �"�

�
�1!�� and �,A

are constants depending on y(0) and yR (0).
Substituting the responses into equation (1) and setting the right-hand-side to zero yields

Ae����� (m��
�
ej2�

#jc�
�
e��#k) e����"0 N m��

�
e���#jc�

�
e��#k"0. (10, 11)

In force state mapping from free response data, the restoring force is simply the inertial
force myK , thus the mass must be known. As with the forced response, the parameter
estimation process is simply a matter of closing the vector triangle shown in Figure 4(a).
The force diagram for a phase lag applied to the displacement signal is shown in

Figure 4(b). To evaluate the error in the estimated sti!ness, consider the triangle PQS:

k�/sin(�)"m��
�
/sin (�#�)"k/sin (�#�) N k�/k"sin(�)/sin(�#�) . (12, 13)

Some manipulation yields an expression for the normalized error as

�
�
"(tan � (1!cos �)!sin �)/(tan � cos �#sin �) . (14)



TABLE 2

Errors in parameter estimates for free response

Phase lag in

Error Displacement Velocity

�
�

tan � (1!cos �)!sin �
tan � cos �#sin �

2 tan �
tan �!tan �

�
� !

sin � sin � tan�#sin � cos �
2(sin � cos �#sin � cos �)

tan � (1!cos �)#sin �
tan � cos �!sin �

TABLE 3

Approximate errors in parameter estimates for free response

Phase lag in

Error Displacement Velocity

�
�

!�� 2��
�
�

�/2� ��
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The error in the damping estimate due to a time lag in the displacement can be evaluated by
"rst working on triangle PQR in Figure 4(b), namely

c�
�
"!m��

�
sin(2�)/sin(�) (15)

and then on triangle PQS:

c��
�
"!m��

�
sin(2�#�)/sin(�#�) . (16)

Equations (15) and (16) yield

�
�
"!(sin � sin � tan �#sin � cos �)/2(sin � cos �#sin � cos �) . (17)

Figure 4(c) shows a situation similar to Figure 4(b), but now the time lag is applied to the
velocity. The same geometric approach can be applied to obtain errors in the estimated
sti!ness and damping as

�
�
"2tan�/(tan�!tan �) , (18)

�
�
"(tan � (1!cos �)#sin �)/(tan � cos �!sin �) . (19)

The error estimates of equations (14), (17)}(19) are summarized in Table 2.
In many applications the damping is low [7, 5, 9]. Thus, �;1Ntan �+1/� , sin�+1.

Furthermore, for most experimental set-ups the time lag �t will be small and so small angle
approximations can be applied. If both these conditions are valid, then the errors can be
well approximated as shown in Table 3.
A cursory inspection of these quantities will reveal that only �

�
for a phase error in the

displacement will be signi"cant as it is a quotient of two small numbers, while the other
errors are products of two small numbers.
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Figure 5. Error in damping estimate caused by time lag in displacement: �, FSM identi"cation;**, expression
in Table 3.
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Using the de"nitions of � and noting that for free response �+�
�
, the error in the

damping estimate for a given time lag is

�
�
"�

�
�t/2�. (20)

This is exactly the same as equation (8) indicating that damping estimates from free
response data are equally prone to error caused by displacement phase error as those from
forced response data.
To demonstrate the validity of the expression for �

�
, consider a speci"c example of the

system in Figure 1 with system parameters, m"1 kg, c"2)0N s/m, k"2500N/m (i.e.,
�

�
"50 rad/s, �"2%). The response was obtained with equations (9). Various time lags

were applied to the displacement and the system parameters were estimated using force
state mapping (FSM). As predicted, the error in the sti!ness estimate was always very small
((1%), however, as can be seen in Figure 5, the errors in the damping are signi"cant and
follow the predicted trend.

4. CONCLUSIONS

A novel method of assessing the sensitivity of the parameter estimates obtained from
force state mapping to a phase lag in the response signals has been described for a linear
system undergoing either free or forced response.
It has been shown that in systems with low damping, the sensitivity of the damping

estimate due to phase distortion in displacement is comparable for both free and forced
response. However, the free response data has the advantage over forced response that it is
not prone to the most signi"cant source of error in the damping estimates (a phase
distortion of the excitation force).
Although this cannot be extended directly to non-linear systems, for certain classes of

non-linearities the error trends obtained here will be indicative of the error associated with
the non-linear parameters.
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